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With the goal of minimizing the domain size for molecular dynamics (MD) simulations, we
develop a new class of absorbing boundary conditions (ABCs) that mimic the phonon
absorption properties of an unbounded exterior. The proposed MD-ABCs are extensions
of perfectly matched discrete layers (PMDLs), originally developed as an absorbing bound-
ary condition for continuous wave propagation problems. Called MD-PMDL, this extension
carefully targets the absorption of phonons, the high frequency waves, whose propagation
properties are completely different from continuous waves. This paper presents the
derivation of MD-PMDL for general lattice systems, followed by explicit application to
one-dimensional and two-dimensional square lattice systems. The accuracy of MD-PMDL
for phonon absorption is proven by analyzing reflection coefficients, and demonstrated
through numerical experiments. Unlike existing MD-ABCs, MD-PMDL is local in both space
and time and thus more efficient. Based on their favorable properties, it is concluded that
MD-PMDL could provide a more effective alternative to existing MD-ABCs.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Molecular dynamics (MD) is a widely used method to study physical phenomena at the atomic scale. It offers valuable
insights into the behavior of certain macroscopic processes like fracture, which are fundamentally triggered at the atomistic
scale. One of the major problems in using MD simulation to study such processes is the computational expense involved in
simulating a large system. To make the simulation tractable, the MD domain is usually truncated with simple (Dirichlet/Neu-
mann/Periodic) boundary conditions applied at the truncation boundary. However, a simple boundary condition would
result in significant energy being artificially reflected back into the region of interest and can completely distort the physical
phenomenon being studied. To minimize this error, the simulation domain is taken to be much larger than the region of
interest which significantly increases the computational expense of the simulation. This can be avoided by using a more
appropriate boundary condition that mimics the effect of the exterior at the truncation boundary. Applying such a boundary
condition leads to a much smaller computational domain, thus resulting in significant savings in computational expense.

The problem discussed above is similar to that of suppressing artificial reflections at the truncation boundary of an infi-
nite domain in continuum wave propagation. This problem has been studied extensively and there exist boundary conditions
called absorbing boundary conditions (ABCs) that are quite effective in absorbing the incoming energy thus mimicking the
exterior [1,2]. It seems natural to extend these boundary conditions to the discrete domains encountered in MD. However,
. All rights reserved.

x: +1 919 515 7908.
N. Guddati), sthirun@ncsu.edu (S. Thirunavukkarasu).

http://dx.doi.org/10.1016/j.jcp.2009.07.033
mailto:murthy.guddati@ncsu.edu
mailto:sthirun@ncsu.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


M.N. Guddati, S. Thirunavukkarasu / Journal of Computational Physics 228 (2009) 8112–8134 8113
since lattice vibrations (phonons) generated in the MD domain have high frequencies and propagate differently from waves
in continuous media, continuous ABCs are no longer effective. Instead, ABCs should be derived explicitly for discrete domains
to absorb high-frequency phonons. Many ABCs have been developed for this purpose and are summarized in the following
paragraphs.

Exact boundary conditions based on the Green’s function of the exterior: First developed by Adelman and Doll [3], this ap-
proach essentially involves computing the interatomic forces at the truncation boundary through convolution of the bound-
ary response with the exterior Green’s function. Cai et al. [4] adopt a similar procedure where the Green’s functions for
square lattice systems are obtained numerically. Liu and co-workers have extended the idea to more general crystals
[5,6]. While these boundary conditions are highly accurate, they are prohibitively expensive and impractical because they
involve expensive convolution in time, as well as non-local spatial coupling of boundary atoms.

Rational approximation based methods (rational ABCs): In the context of continuous wave propagation, ABCs are typically
derived with the help of rational approximation of the Green’s function. These approximations have been directly applied to
molecular dynamics simulations [7], but it must be noted that they ignore the discrete dispersion relation and thus cannot
accurately absorb high-frequency phonons.

Perfectly matched layer (PML): The PML, also a continuum ABC, involves replacing the exterior with an attenuating med-
ium (PML region) that perfectly matches in impedance with the interior [8], and is truncated using Dirichlet boundary con-
ditions. Due to the impedance matching, there are no reflections at the interface, and due to attenuation in the PML region,
the reflection due to truncation is minimal. Owing to its generality and flexibility in applications to complex geometries
involving corners, PML is one of the very widely used continuous ABCs, although it has been recently shown that PML
may not be as efficient as rational ABCs [9]. PML has been extended to discrete lattice systems in [10], where the interatomic
spacing is made complex-valued. This is equivalent to complex stretching in continuous PML that results in wave attenua-
tion (see e.g. [11]). Perfect impedance matching, however, is no longer preserved due to the discrete nature of the problem,
leading to significant reflection of high-frequency phonons [12].

Variational boundary condition (VBC): E and co-workers tackle the problem from an optimization view point by using var-
iational principles to minimize the total phonon reflection [13,14]. The basic idea is to increase coupling in the direction nor-
mal to the boundary, so as to reduce the extent of coupling in time. The main advantage of VBC is its generality; the
procedure is applicable to complex lattice systems. VBC is perhaps the most practical MD-ABC to date in that it is effective
in absorbing high-frequency phonons and is more efficient than Green’s function based methods. Although the extent of cou-
pling in time is reduced by coupling in space, VBCs still involve convolution operations and are computationally expensive
compared to rational ABCs and PMLs. Furthermore, while VBC’s stability is ensured through explicit constraints [15], such
constraints appear to be sufficient but not necessary for stability, indicating potential degradation of optimal accuracy
(for example, the rational ABCs are stable [16] in spite of not satisfying the stability conditions imposed for VBC in [15]).
Other minor shortcomings of the method are the lack of transparency in the approximation properties and systematic exten-
sion to corners.

In light of the existing ABCs discussed above, it is desirable to obtain a boundary condition that is as accurate as VBCs, as
flexible as PMLs (in extension to corners), and as efficient as rational ABCs. To this end, we build on recent research linking
continuous PML with rational ABCs [17] to create a class of boundary conditions called perfectly matched discrete layers
(PMDLs) [18]. PMDL is essentially PML discretized using linear finite elements with mid-point integration. It has been shown
that the integration error exactly cancels the discretization error, thus resulting in perfect matching even after the discret-
ization of the exterior (hence the name, perfectly matched discrete layers). Furthermore, PMDL is equivalent to rational ABCs
and thus inherits their efficiency while retaining the flexibility of PML. However, PMDL in Refs. [17,18] is developed for con-
tinuous wave equation, i.e. PMDL is perfectly matched with the continuous interior, but not with the discrete interior. Thus
the continuous PMDL, like other ABCs for wave equation, works well at low frequency limits, but fails in absorbing high
frequency phonons. However, we show that the underlying idea of continuous PMDL, namely matching impedance with
discrete systems, can be exploited to develop an effective ABC for MD.

Specifically, we show that a PMDL can be viewed as a discrete lattice with nonuniform spacing that has the special prop-
erty of the characteristic impedance [19] being independent of the atomic spacing. We further show that, for a particular
choice of parameters, a PMDL lattice can be made algebraically identical to a general periodic harmonic lattice. Since the
PMDL lattice has the additional property of being perfectly matched irrespective of the spacing, any phonon reflections that
are introduced due to the truncation of the lattice can be damped out using a few exterior atoms with complex-valued atom-
ic spacing. Named MD-PMDL, the resulting boundary condition is similar in form to continuous PMDL and requires only
slightly more computational effort. Compared to existing methods for discrete systems, the proposed method shows promise
in providing a more efficient and systematic boundary condition. It should be noted that while MD-PMDL is similar in spirit
to continuous PML/PMDL boundary conditions, it is not the same as applying PML/PMDL discretization to the continuum
limit equation of the original harmonic lattice. We present both analytical and numerical results that demonstrate this cru-
cial difference.

The outline of the rest of the paper is as follows. The basic problem setup is presented in Section 2 with the help of one-
dimensional Frenkel–Kontorova model. Since MD-PMDL is closely related to PMDL, a summary of PMDL ABCs is provided in
Section 3, and the extension to a discrete interior is explained in Section 4. The formulation of MD-PMDL including a-priori
error analysis and a numerical example is presented in Section 5. The extension of MD-PMDL to a square lattice along with
numerical examples is presented in Section 6 and the paper is concluded with some closing remarks in Section 7.
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2. Preliminaries

We choose the 1-D Frenkel–Kontorova (FK) model to illustrate the ideas in a 1-D setting. A lattice is an infinite chain of
atoms with mass m that are spaced apart at a distance h (see Fig. 1(a)). The atoms are labeled with fractional indices, while
integer indices are used for the interconnecting cells.

The governing equations for the Frenkel–Kontorova model are given by
m€ujþ1
2
¼ p ujþ3

2
� 2ujþ1

2
þ uj�1

2

� �
� V 0ext xjþ1

2

� �
þ f ext

jþ1
2
;

xjþ1
2
¼ jþ 1

2

� �
hþ ujþ1

2
for j ¼ �1� � �1;

ð1Þ
where u is the displacement field of the atoms, Vext is an external potential field and p describes the strength of nearest-
neighbor interaction between the atoms. Let us consider a partition of the 1-D infinite lattice into interior and exte-
rior atoms, corresponding to negative and positive indices, respectively. This results in the partitioning of the cells into
three regions (interior, boundary and exterior) as shown in Fig. 1(b). The interior is essentially the region of interest
in the MD simulation, while the exterior is to be replaced by an MD-ABC. Specifically, the goal is to devise an MD-ABC
at x1

2
that mimics the absorption properties of the exterior. It should be emphasized that the dynamics of the exterior is

important only at the interface as we are merely interested in the propagation of energy from the interior into the
exterior.

2.1. Harmonic approximation of the exterior

The potential field is assumed to be a harmonic function in the exterior (this is typical for the development of most
MD-ABCs; it appears important to include the entire nonlinear region in the interior). This is a reasonable assumption as
the exterior is far away from the region of activity and the displacements of the atoms in the exterior are small. Under this
assumption, the force due to the external potential, V 0ðxÞ, can be approximated by
Fig. 1. Schematic of an infinite 1-D lattice.



M.N. Guddati, S. Thirunavukkarasu / Journal of Computational Physics 228 (2009) 8112–8134 8115
V 0ext xjþ1
2

� �
¼ lujþ1

2
; ð2Þ
where l ¼ V 00ext jþ 1
2

� �
h

� �
is the force constant and can be determined by evaluating the linearized force due to the potential

about the equilibrium positions. Thus, (1) can be written in frequency domain as
�aD2ujþ1
2
� bujþ1

2
¼ f ext

jþ1
2
; j ¼ 0; . . . ;1; ð3Þ
where a ¼ ph2
; b ¼ mx2 � l, and D2 is the central difference operator given by
D2uj ¼
1

h2 ðujþ1 � 2uj þ uj�1Þ: ð4Þ
The reduced Eq. (3) is also known as the discrete wave equation and is used to model the energy transport in a lattice. The
propagation of energy in a lattice is usually modeled as the propagation of discrete waves, called phonons, that are
governed by the discrete wave equation. Thus, the discrete wave Eq. (3) will be used as the governing equation for the
exterior.

2.2. The assembly operator

A lattice is a periodic structure with a unit cell being the basis. Thus, it is natural to express the lattice as an assembly of
unit cells as shown in Fig. 1(d). To make the subsequent discussions simpler, the finite element assembly operator [20] is
used to represent (3) in a concise form. The assembly operator and the modified equations are discussed next.

Let the equation for an individual unit cell, with index i, be given by
ai �bi

�bi ai

� 	
ui ¼ fi; ð5Þ
where ut
i ¼ ui�1

2
uiþ1

2

h i
contains the displacements of the left and right atoms, and ft

i ¼ fi�1
2

fiþ1
2

h i
contains the correspond-

ing forces from the rest of the lattice. The assembly operator, A, is defined as
A1i¼�1
a b

c d

" # !
¼

. .
.

c aþ d b

. .
.

26664
37775;

A1i¼�1
a

b

( ) !
¼

..

.

bþ a

..

.

8>>><>>>:
9>>>=>>>;;

ð6Þ
where i represents the unit cell index. Using the above definitions, the 1-D discrete wave equation can be written as
A1i¼�1
a� b

2 �a

�a a� b
2

" # !
U ¼ F: ð7Þ
The assembly operation can also be defined for the case of a 2-D lattice in a similar way. Consider a 2D unit cell
given by
Au ¼ f �

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

266664
377775

u1

u2

u3

u4

8>>>><>>>>:

9>>>>=>>>>; ¼
f1

f2

f3

f4

8>>>><>>>>:

9>>>>=>>>>;; ð8Þ
where u1;u2;u3 and u4 are the displacements at the nodes of the cell. The 2-D assembly can now be concisely expressed as
A
i¼�1;...;1
j¼�1;...;1

fAg

0@ 1AU ¼ A
i¼�1;...;1
j¼�1;...;1

ffg

0@ 1A; ð9Þ
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where A
i¼�1;...;1
j¼�1;...;1

fg is the 2-D assembly operator defined by2 3
A
i¼�1;...;1
j¼�1;...;1

fAg ¼

m1 � � �m2 � � �m3 � � �m4 � � �
# # # #

m1 ! ::þ a11 ::þ a12 ::þ a13 ::þ a14

..

.

m2 ! ::þ a21 ::þ a22 ::þ a23 ::þ a24

..

.

m3 ! ::þ a31 ::þ a32 ::þ a33 ::þ a34

..

.

m4 ! ::þ a41 ::þ a42 ::þ a43 ::þ a44

..

.

666666666666666666666666664

777777777777777777777777775

; ð10Þ

A
i¼�1;...;1
j¼�1;...;1

ffg ¼

m1 ! ::þ f1

..

.

m2 ! ::þ f2

..

.

m3 ! ::þ f3

..

.

m4 ! ::þ f4

..

.

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>;

; ð11Þ
where m1; m2; m3 and m4 are the indices of the displacements u1;u2;u3 and u4 in the assembled system U.

2.3. Problem statement for a 1-D periodic lattice

For the sake of simplicity, consider a generic harmonic and periodic lattice with the governing equations given by
A
1

i¼�1

p q

r p

� 	� �
U ¼ F; ð12Þ
where p; q and r depend on the specific governing equation. Let ui; fi be the displacement, force vectors for the interior, and
ue; fe be the corresponding vectors for the exterior i.e.
ui ¼

u�1

..

.

u�1
2

8>><>>:
9>>=>>;; f i ¼

f�1

..

.

f�1
2

8>><>>:
9>>=>>;; ue ¼

u1
2

..

.

u1

8>><>>:
9>>=>>;; fe ¼

f1
2

..

.

f1

8>><>>:
9>>=>>;: ð13Þ
The discrete system (13) can now be written as
Aii 0
0 Aee

� 	
ui

ue


 �
¼

�fi
�fe

( )
; ð14Þ
where Aii and Aee are given by
Aii ¼ bP þ A
�1

i¼�1

p q

r p

� 	� �
; bP ¼ . .

. ..
.

0 0

� � � 0 p

2664
3775;

Aee ¼ Pþ A
1

i¼1

p q

r p

� 	� �
; P ¼

p 0 � � �
0 0

..

. . .
.

264
375;

ð15Þ
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and �fi;
�fe are given by
�fi ¼ fi �

0
..
.

qu1
2

8>><>>:
9>>=>>;; �fe ¼ fe �

ru�1
2

0
..
.

8>><>>:
9>>=>>;: ð16Þ
Note that in (16), the interior is coupled to the exterior through the displacement at i ¼ 1
2 and thus, to solve the interior we

only need the displacement at i ¼ 1
2. Also note that �fe is zero except at i ¼ 1

2. Thus, u3
2;

5
2;...1

can be eliminated and the effect of

the exterior can be written solely in terms of u1
2
. This is essentially the Dirichlet-to-Neumann (DtN) relation for the exterior

and can be written as
Ku1
2
¼ f1

2
; ð17Þ
where K is the DtN map for the exterior. K is also commonly referred to as the discrete half-space stiffness or characteristic
impedance [19]; all three terms will be used interchangeably in subsequent discussions. Note that the assumption of zero
sources in the exterior implies that the exterior supports only waves traveling to þ1.

Thus, the goal of an MD-ABC can be restated as approximating the DtN map, or the discrete half-space stiffness, of the
exterior. This is analogous to the problem of approximating the DtN map of a continuous half-space in continuum wave
propagation. This problem has been studied extensively and there exist mature continuous methods that approximate
the DtN map in an accurate and efficient manner. We choose a particular class of ABCs called perfectly matched discrete lay-
ers (PMDLs) for its generality and flexibility [17,18]. The PMDL boundary conditions are summarized in the next section.

Nonlinear Interactions in the Interior: While the lattice in (13) was considered to be harmonic for simplicity, the above dis-
cussion is also valid for a nonlinear lattice. If the interior is nonlinear, Aii in (14) becomes a nonlinear operator and the inte-
rior equations are identical to the original problem. The only necessary assumption in the above discussion is that harmonic
approximation is valid in the exterior region.

3. A summary of perfectly matched discrete layer (PMDL)

3.1. PMDL for the scalar wave equation

PMDL is a class of ABC that approximates the stiffness of a continuous half-space [18]. Though PMDL is applicable to any sec-
ond-order system [21], for the sake of simplicity the central ideas are summarized using a one-dimensional scalar wave equa-
tion. Consider a right half-space with the left boundary at x ¼ 0 as shown in Fig. 2(a). Let the governing equation be given by
� @
2u
@x2 þ luþ @

2u
@t2 ¼ 0: ð18Þ
The reduced form of (18) is
� @
2u
@x2 �Ku ¼ 0; ð19Þ
where K ¼ x2 � l is a differential operator. Eq. (19) can be decomposed as
� @

@x
� i

ffiffiffiffi
K
p� �

@

@x
þ i

ffiffiffiffi
K
p� �

u ¼ 0; ð20Þ
where the first factor represents forward propagating waves while the second factor represents backward propagating
waves. When the excitation is limited to the boundary, x ¼ 0, waves propagate only in the positive x direction. Hence, the
governing equation of the right half-space can be written as
@u
@x
� ikxu ¼ 0; kx ¼ þ

ffiffiffiffi
K
p

; ð21Þ
where kx is the wave number. Eq. (21) can be viewed as a relationship between Dirichlet and Neumann data at the boundary
x ¼ 0. This relation is deceptively simple; note that kx is the square-root of the differential operator K. Due to the irrational
nature of the square-root operator, kx is a pseudo differential operator involving expensive convolution operations. Tradi-
tionally, the computational expense is reduced by approximating the square-root operator with a rational function, thus
leading to a differential form of (21).

The above procedure of factorization and rational approximation is not possible for all wave equations. PMDL takes a dif-
ferent route and completely circumvents the need for explicit factorization or rational approximation. PMDL derivation, in-
stead involves a multi-step procedure based on complex coordinate stretching and special finite-element discretization of
the half-space, that eventually results in a robust approximation of the half-space stiffness leading to an effective one-
way wave equation. The steps of the derivation are as follows.



Fig. 2. Steps in the formulation of PMDL.

8118 M.N. Guddati, S. Thirunavukkarasu / Journal of Computational Physics 228 (2009) 8112–8134
Step 1. Split the half-space ½0;1Þ into a finite element ½0; L� and another half-space ½L;1Þ, with the finite element discret-
ized using linear shape functions as shown in Fig. 2(b). The stiffness matrix of the finite element layer can be easily derived to
be
Kfe ¼
~a ~b
~b ~a

" #
; where

~a ¼ 1
L � k2

x
L
2 ;

~b ¼ � 1
L :

ð22Þ
Considering that there is no excitation at the node at x ¼ L, the assembled finite-element equations take the form
~a ~b
~b ~aþ Kexact

" #
u1

u2


 �
¼

f1

0


 �
; ð23Þ
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where Kexact is the stiffness of the right half-space, f1 is the Neumann data at x ¼ 0, and u1;u2 are the displacements at
x ¼ 0; x ¼ L, respectively. Eliminating u2 from (23) results in
f1 ¼ ~a�
~b2

~aþ Kexact

 !
u1: ð24Þ
The above equation is a relationship between the Dirichlet and Neumann data of the discretized half-space. The term in the
parentheses is effectively the stiffness of the composite half-space. It can be clearly seen that the above relationship is
approximate in that, if the exact half-space stiffness is substituted for the right half-space, i.e. Kexact ¼ �ikx, the resulting
composite half-space stiffness is not recovered (this can be verified easily with the help of (22)).

Step 2 is the key to the development of PMDL and involves the elimination of the finite-element discretization error (with
respect to the half-space stiffness at x ¼ 0). This is achieved by simply using midpoint integration to approximately evaluate
the finite element stiffness matrix resulting in
Kmid-pt
fe-layer ¼

a b
b a

� 	
; where

a ¼ 1
L � k2

x
L
4 ;

b ¼ � 1
L � k2

x
L
4 :

ð25Þ
When the above approximation is used, we get the following relationship between the stiffnesses of the composite half-
space and the right half-space:
Kcomposite ¼ a� b2

aþ Kexact

 !
: ð26Þ
It is easy to verify that, when the exact stiffness ð�ikxÞ is substituted for Kexact , we obtain Kcomposite ¼ �ikx, which is also exact
(this can be clearly seen by noting that a2 � b2 ¼ K2

exact). Note that the relationship is exact irrespective of the element length
L; it can be arbitrarily large and even complex.

Step 3. The above splitting is recursively applied to discretize the original half-space into an infinite number of finite ele-
ment layers without introducing any discretization errors. This is equivalent to saying that the assembly
A
1

j¼1

1
Lj

1 �1
�1 1

� 	
� k2

x Lj

4
1 1
1 1

� 	( ) !
; where Lj ¼ xj � xj�1; ð27Þ
is an exact representation of the the half-space stiffness at x ¼ 0.
Step 4. For reasons of computability, the number of layers is limited to n, with a Dirichlet boundary condition applied at

x ¼ xn as shown in Fig. 2(d). However, imposing a Dirichlet boundary condition results in complete reflection of rightward
propagating waves and hence this model fails to act as an ABC. This is handled by using the idea that propagating waves are
damped out by complex media. By choosing the lengths of the finite element to be complex (see Fig. 2(e)) the incoming en-
ergy into the PMDL elements can be damped out and the reflections can be reduced significantly.

3.2. PMDL for a general second-order vector equation

While the arguments in the previous section are explained in the context of scalar wave equation, they are also valid for
any second-order vector equation [21]. Specifically, it is shown in [21] that the half-space of a system governed by a second-
order vector equation of the form
�A
@2u
@x2 þ B

@u
@x
þ Cu ¼ 0; ð28Þ
can be replaced by the infinite assembly
A
1

i¼1

1
Li

A �A
�A A

� 	
þ 1

2
�B B
�B B

� 	
þ 1

4
Li

C C
C C

� 	
 �
Ue ¼ Fe; ð29Þ
that preserves the DtN map of the original system at the interface x ¼ 0. The assembly operator in (29) can be rewritten as an
assembly of Kronecker products, i.e.
A
1

i¼1

1
Li

1 �1
�1 1

� 	
� Aþ

�1 1
�1 1

� 	
� 1

2
Bþ Li

1 1
1 1

� 	
� 1

4
C


 �
: ð30Þ
If we define basis matrices as
A�1 ¼
1 �1
�1 1

� 	
; A0 ¼

�1 1
�1 1

� 	
; A1 ¼

1 1
1 1

� 	
; ð31Þ
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and coefficient matrices as
C�1 ¼ A; C0 ¼
B
2
; C1 ¼

C
4
; ð32Þ
then (30) can be expressed concisely as( ) !

A
1

i¼1

X
f2f�1;0;1g

Lf
i Af � Cf Ue ¼ Fe: ð33Þ
4. MD-PMDL: an extension of PMDL for molecular dynamics

In Section 2.3, it was shown that the exterior of a harmonic lattice can be expressed as
Pþ A
1

i¼1

p q

r p

� 	
 �� �
Ue ¼ Fe; ð34Þ
where P is defined in (15). In fact, for the more generic vector system, the exterior can be written as
Pþ A
1

i¼1

P Q
R P

� 	
 �� �
Ue ¼ Fe; ð35Þ
where P, Q and R are the stiffness matrices that describe the interaction between the unit cells. Note that (35) can also be
expressed as
Pþ A
1

i¼1

1 �1
�1 1

� 	
� P�1 þ

�1 1
�1 1

� 	
� P0 þ

1 1
1 1

� 	
� P1


 �� �
Ue ¼ Fe; ð36Þ
where
P�1 ¼
P
2
� Q þ R

4
; P0 ¼

Q � R
2

; P1 ¼
P
2
þ Q þ R

4
: ð37Þ
Using the basis matrices defined in (31, 36) can be concisely written as
Pþ A
1

i¼1

X
f2f�1;0;1g

Af � Pf

( ) !
Ue ¼ Fe: ð38Þ
Note that (38) is identical to the PMDL system in (33) for Li ¼ 1 and Cf ¼ Pf . Since the stiffness-preserving property of PMDL
is independent of Li, (33) with variable Li is still an exact representation of the discrete half-space with respect to the stiffness
at the interface at x ¼ 0. Thus, the discrete half-space can be replaced by PMDL elements such that the characteristic imped-
ance is preserved at every point irrespective of the length of the PMDL elements. However, the PMDL system in (33) is
infinite and to make the computation tractable, the system is truncated with a Dirichlet boundary condition applied at
the end. This truncation introduces an error in the approximation of the discrete half-space, which can be reduced by choos-
ing complex values for Li in a manner similar to PMDL. This will be discussed in more detail in Section 5.2, where an error
estimate for the boundary condition is derived.

To summarize, the exterior of the discrete lattice in (38) can be approximated in an efficient and accurate manner using
the PMDL boundary conditions. The above procedure to extend a continuum ABC to the discrete domain is the central idea
of this paper. This particular extension of PMDL to the discrete problem is named MD-PMDL. The details of the formulation of
MD-PMDL for 1-D is discussed in subsequent sections.

Remark on crystal symmetry: Due to nonuniform spacing introduced in MD-PMDL, the reader may be concerned with the
loss of crystal symmetry. Note that the symmetry is lost only in the exterior; the interior remains unaltered with crystal
symmetry completely intact. Since we are interested in the solution in the interior only, the loss of crystal symmetry in
the exterior is immaterial. We are only interested in the effect of the exterior on the interior (the DtN map) and this is
captured accurately by the PMDL.

Remark on PMDL vs.continuous PML: Note that the reason PMDL could be extended to discrete lattices is that it is perfectly
matched with the interior in the discrete sense. Continuous PML, on the other hand, does not preserve perfect matching for
discrete systems, i.e. stretching of inter-atomic spacing will alter the characteristic impedance, resulting in spurious reflec-
tions at the interface.

5. MD-PMDL formulation for 1-D lattice

Consider the governing equation for the exterior (including boundary cell) in (15):
A
1

i¼1

p q

r p

� 	
 �
þ P

� �
Ue ¼ Fe: ð39Þ
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It was shown in the previous sections that the operator on the left can be approximated using a truncated m layered PMDL
system, i.e.
A
1

i¼1

p q

r p

� 	
 �
Ue � Am

i¼1
1
Li

c�1A�1 þ c0A0 þ Lic1A1


 �
Ue; ð40Þ
where A�1;A0 and A1 are the basis matrices defined in (31) and the coefficients c�1; c0 and c1 are given by
c�1 ¼
p
2
� qþ r

4
; c0 ¼

q� r
2

; c1 ¼
p
2
þ qþ r

4
: ð41Þ
Note that A�1 ¼ v�1vt
�1 and A1 ¼ v1vt

1, where vt
�1 ¼ �1 1½ � and vt

1 ¼ 1 1½ �. Thus, (40) can be expressed as
A
m

i¼1

1
Li

c�1v�1vt
�1 þ c0A0 þ Lic1v1vt

1


 �
þ P

� �
Ue ¼ Fe: ð42Þ
As mentioned in Section 3, the lengths Li in (42) are chosen to be complex to minimize the error in the approximation. This is
discussed in more detail in Section 5.2. Furthermore, the imaginary part of each Li is made frequency dependent so that the
equations are real valued when transformed back into time domain. Hence, the lengths are assumed to be of the form
Li ¼ pi þ
qi

iw
; i ¼ 1; . . . ;m; ð43Þ
where pi and qi are parameters of the method that can be optimized to minimize the error in the approximation. Let us define
state variables s1;i and s2;i for a unit cell i as
s1;i ¼
1
Li

c�1vt
�1ui;

s2;i ¼ Lic1vt
1ui:

ð44Þ
The governing Eq. (42) can now be expressed in terms of the state variables as
A
m

i¼1
v�1s1;i þ v1s2;i
 �

þ Am
i¼1fc0A0g þ P

� �
Ue ¼ Fe: ð45Þ
Since Li is frequency dependent, s1 and s2 are also frequency dependent and can be derived by first substituting (43) into (44)
and expanding to get
piðixs1;iÞ þ qis1;i ¼ c�1vt
�1ðixuiÞ;

ðixs2;iÞ ¼ c1vt
1ðpiðixuiÞ þ qiuiÞ:

ð46Þ
The time domain definition of state variables is obtained through an inverse Fourier transform of (46) and is given by
pi
@s1;i

@t
þ qis1;i ¼ c�1vt

�1
@ui

@t
;

@s2;i

@t
¼ c1vt

1 pi
@ui

@t
þ qiui

� �
:

ð47Þ
Eq. (45) together with (47) is the complete statement of a m-layered MD-PMDL boundary condition for a 1-D lattice and can
summarized as
A
m

i¼1
fv�1s1;i þ v1s2;ig þ Am

i¼1fc0A0g þ P
� �

Ue ¼ Fe;

pi
@s1;i

@t
þ qis1;i ¼ c�1vt

�1
@ui

@t
@s2;i

@t
¼ c1vt

1 pi
@ui

@t
þ qiui

� �
9>>=>>; for i ¼ 1; . . . ;m: ð48Þ
5.1. Time domain implementation

The equations for the exterior at time t ¼ tnþ1 can be written as
A
m

i¼1
fv�1snþ1

1;i þ v1snþ1
2;i g þ ðA

m
i¼1fc0A0g þ PÞUnþ1

e ¼ Fnþ1
e : ð49Þ
The state variables snþ1
1 and snþ1

2 can be obtained by discretizing (47) about t ¼ tnþ1
2

using the Crank–Nicolson scheme
@ð�Þ
@t

nþ1
2

¼ ð�Þ
nþ1 � ð�Þn

Dt
;

ð�Þnþ
1
2 ¼ ð�Þ

nþ1 þ ð�Þn

2
;

ð50Þ
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to get the following evolution equations for state variables:
snþ1
1;i ¼

r̂i

ri
sn

1;i þ
c�1

ri
vt
�1 unþ1

i � un
i

� �
; ð51Þ

snþ1
2;i ¼ sn

2;i þ c1vt
1 riunþ1

i � r̂iun
i

� �
; ð52Þ
where ri ¼ pi þ qi
Dt
2 and r̂i ¼ pi � qi

Dt
2 . Substituting the expressions for the state variables (51) and (52) into (49), we obtain
A
m

i¼1
v�1

r̂i

ri
sn

1;i


 �
þ A

m

i¼1

c�1

ri
v�1vt

�1


 �� �
ðUnþ1

e � Un
eÞ þ A

m

i¼1
v1sn

2;i

n o
þ A

m

i¼1
fc1v1vt

1g riU
nþ1
e � r̂iU

n
e

� �
þ Pþ A

m

i¼1
fc0A0g

� �
Unþ1

e ¼ Fnþ1
e : ð53Þ
The above equation can be rearranged and expressed as
KLUnþ1
e ¼ Fnþ1

e � Fn
sv þ KRUn

e; ð54Þ
where KL and KR are the stiffness matrices and Fsv is the forcing term due to the state variables and are given by
KL ¼ Pþ A
m

i¼1

c�1

ri
A�1 þ c0A0 þ ric1A1


 �
;

KR ¼ A
m

i¼1

c�1

ri
A�1 þ r̂ic1A1


 �
;

Fn
sv ¼ A

m

i¼1

r̂i

ri
sn

1;iv�1 þ sn
2;iv1


 �
:

ð55Þ
5.2. Error estimates

Consider a general harmonic and periodic lattice governed by the equation
A
1

i¼�1

A B
C A

� 	� �
U ¼ F: ð56Þ
The solution takes the form unþ1
2
¼
R

�uðkÞeinkdk, where each wave mode satisfies the governing Eq. (56). Substituting a single
mode, �uðkÞeink, in (56) results in
ðCe�ik þ 2Aþ BeikÞ�uðkÞ ¼ 0: ð57Þ
The relation (57) is more commonly known as the dispersion relation.
The goal here is to find the error in the approximation of the discrete half-space using MD-PMDL layers. Let us consider a

wave mode in the interior traveling to the right and incident on the interface. If the exterior is an exact representation of the
discrete half-space, then this wave mode would travel into the exterior without causing any reflections at the interface. This
is because a half-space can only support outgoing wave modes. However, if the exterior is replaced by MD-PMDL layers, then
the inexactness of the exterior would result in waves being reflected into the interior. Thus, the magnitude of the reflected
wave compared to the incident wave can be taken as a quantitative measure of the error in the approximation of the discrete
half-space.

Consider the solution field in the interior+boundary region i 6 1
2

� �
:

unþ1
2
¼ Ieink1 þ RIeink2 for n 6 0; ð58Þ
where k1 is the forward propagating wave number, k2 is the backward propagating wave number, I is the amplitude of
the incident wave mode and R I is the amplitude of the reflected wave. The scalar R, which is the ratio of the amplitudes
of the reflected mode to the incident mode is known as the reflection coefficient. Note that jRj ¼ 1 if the wave is completely
reflected at the interface and jRj ¼ 0 if it is completely absorbed. Thus, a low value of jRj implies a good approximation of the
discrete half-space.

The incident and the reflected modes should satisfy the dispersion relation (57), i.e.
ðCe�ik1 þ 2Aþ Beik1 ÞI ¼ 0; ð59Þ
RðCe�ik2 þ 2Aþ Beik2 ÞI ¼ 0: ð60Þ
Subtracting (59) from (60) and simplifying, we get
ðek1 � ek2 ÞðCe�k1 e�k2 � BÞI ¼ 0;

) Bek1 I ¼ Ce�k2 I for k1–k2

ð61Þ
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Substituting (61) into (59), we get
ðCe�k2 þ AÞI ¼ �ðCe�k1 þ AÞI: ð62Þ
Now consider the boundary cell, i.e. n ¼ 0. The governing equation for the cell can be written as
A B
C A

� 	 u�1
2

u1
2

( )
¼

f�1
2

f1
2

( )
: ð63Þ
Using the definition of the half-space stiffness (17), i.e. f1
2
¼ Kapproxu1

2
, and substituting (58) into the second equation of (63),

we get
CðIe�ik1 þ RIe�ik2 Þ þ AðIþ RIÞ ¼ KapproxðIþ RIÞ;
) RðCe�ik2 þ AÞIþ ðAþ Ce�ik1 ÞI ¼ Kapproxð1þ RÞI:

ð64Þ
Note that if the half-space was exact, then R ¼ 0 and (64) yields
ðCe�ik1 þ AÞI ¼ KexactI: ð65Þ
Using (62) and (65), (64) can be simplified to
ð1� RÞðCe�k1 þ AÞI ¼ ð1þ RÞKapproxI
) ð1� RÞKexactI ¼ ð1þ RÞKapproxI:

ð66Þ
Thus, the reflection coefficient R should satisfy the relation
detðð1� RÞKexact � ð1þ RÞKapproxÞ ¼ 0: ð67Þ
Error estimate for 1-D MD-PMDL: For the 1-D case, reflection coefficient in (67) can be written as
R ¼ Kexact � Kapprox

Kexact þ Kapprox
: ð68Þ
Also, the equation of the exterior for the general lattice in (15) is given by
A
1

i¼1

p q

r p

� 	� �
U ¼ F; ð69Þ
where p; q and r are scalars. It can be easily shown that the the exact half-space stiffness for the above system is given by
K2

exact ¼ p2 � qr.
Assuming n MD-PMDL cells are used in the approximation of the exterior, we have
A
1

i¼1

p q

r p

� 	� �
� An

i¼1

ai bi

ci ai

� 	� �
; ð70Þ
where
ai ¼
1
2

p� qþ r
2

� � 1
Li
þ 1

2
pþ qþ r

2

� �
Li;

bi ¼ �
1
2

p� qþ r
2

� � 1
Li
þ 1

2
ðq� rÞ þ 1

2
pþ qþ r

2

� �
Li;

ci ¼ �
1
2

p� qþ r
2

� � 1
Li
� 1

2
ðq� rÞ þ 1

2
pþ qþ r

2

� �
Li:

ð71Þ
If Kn is the stiffness of the n-cell MD-PMDL exterior, then the reflection coefficient is given by
Rn ¼
Kexact � Kn

Kexact þ Kn
: ð72Þ
Note that ai and bi have the property
a2
i � bici ¼ K2

exact: ð73Þ
Also, since PMDL is a rational approximation of the half-space (26), we can write
Ki ¼ ai �
bici

ai þ Ki�1
: ð74Þ
Note that if Ki�1 is exact, i.e. Ki�1 ¼ Kexact , then we recover back the exact half-space stiffness from (74), i.e. Ki ¼ Kexact . Substi-
tuting (74) into (72) and using (73) to simplify, we get the following recursive definition for the reflection coefficient:
Rn ¼
ðan � KexactÞðKexact � Kn�1Þ
ðan þ KexactÞðKexact þ Kn�1Þ

¼ an � Kexact

an þ Kexact

� �
Rn�1: ð75Þ
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Since the layers are truncated with a fixed boundary condition we set K0 ¼ 1. Thus, the magnitude of the reflection coeffi-
cient can be written explicitly as
jRnj ¼
Yn

i¼1

ai � Kexact

ai þ Kexact

���� ����: ð76Þ
If Kexact is imaginary (propagating modes) and Li is real, then jRnj ¼ 1 and hence the wave mode will be completely reflected.
Thus, to prevent reflection Li should be imaginary or complex. Similarly, if Kexact is real (evanescent wave modes) then Li has
to be real or complex. This is the reason for choosing the general complex form in (43) for the lengths Li.

Since the aim of MD-PMDL is to be minimize reflections, the lengths Li should be chosen such that jRnj is close to 0. Note
that since each term is smaller than 1, the product goes to zero exponentially with the number of layers. Thus, the error
decays exponentially with the number of MD-PMDL layers. We could optimize the number of layers by choosing optimal
values for parameters Li such that jRnj is minimized. However, ad hoc values of Li are used for the simulations in this work
and optimization of the parameters is a topic for future study.

A comparison of the error estimates between PMDL and MD-PMDL for the discrete wave equation: Consider the exte-
rior for the 1-D discrete wave Eq. (3) and for simplicity assume a ¼ h, b ¼ hk2

x and f ¼ 0, i.e.
�D2
x ujþ1

2
� k2

x ujþ1
2
¼ 0; j ¼ 0; . . . ;1 ð77Þ
or, the equivalent assembly
A
1

i¼1

1
h �

k2
x h
2 � 1

h

� 1
h

1
h �

k2
x h
2

24 350@ 1Aue ¼ fe: ð78Þ
The MD-PMDL approximation for (78) can be written as
An
i¼1

�ai
�bi

�bi �ai

" # !
ue ¼ fe; where

�ai ¼
1
h
� k2

x h
4

 !
1
Li
� k2

x h
Li

4

�bi ¼ �
1
h
� k2

x h
4

 !
1
Li
� k2

x h
Li

4
:

ð79Þ
Also from (57), the dispersion relation for (78) is given by
1
h
ðe�ikh � 2þ eikhÞ ¼ k2

x h

) sin2 kh
2
¼ k2

x h2

4
:

ð80Þ
As seen earlier, the discrete half-space stiffness is given by
Kdisc
exact ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
h
� k2

x h
2

 !2

� 1
h

� �2

vuut ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x 1� k2
x h2

4

 !vuut : ð81Þ
Using (80) and (81) can be simplified to get
Kdisc
exact ¼ �

i
h

sinðkhÞ: ð82Þ
Substituting (82) and (79) in (76), the reflection coefficient becomes
Rmd-pmdl
n

��� ��� ¼Yn

j¼1

ih� Lj tan kh
2

� �
ihþ Lj tan kh

2

� ������
�����

2

: ð83Þ
The reflection coefficient when PMDL is used for the right exterior is given by
Rpmdl
n ¼ Kdisc

exact � Kpmdl

Kdisc
exact þ Kpmdl

; ð84Þ
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where Kpmdl is the stiffness of the PMDL layers formulated for the system obtained as the continuum limit ðh! 0Þ of the
discrete wave equation,
F

� @
2u
@x2 � k2

x u ¼ f : ð85Þ
The reflection coefficient when PMDL is used to approximate the continuous half-space stiffness of (85) is given by
Rcont
n ¼ Kcont

exact � Kpmdl

Kcont
exact þ Kpmdl

; ð86Þ
where Kcont
exact ¼ �ikx is the exact continuous half-space stiffness. Using (86), the stiffness of the PMDL layers can be written as
Kpmdl ¼ aKcont
exact; where a ¼ 1� Rcont

n

1þ Rcont
n

: ð87Þ
Substituting (87) into (84), we get
Rcontinuous-pmdl
n ¼ Kdisc

exact � aKcont
exact

Kdisc
exact þ aKcont

exact

: ð88Þ
Substituting the expressions for the half-space stiffnesses, (88) can be further simplified to
Rcontinuous-pmdl
n ¼

cos kh
2

� �
� a

cos kh
2

� �
þ a

: ð89Þ
Thus (83) and (89) are the error measures when MD-PMDL and Continuous PMDL are used to approximate the right exterior
and are plotted in Fig. 3. The reflection coefficients are plotted against normalized horizontal wavenumbers ðkhÞ for a set of
parameters (Li’s) that were chosen in an ad hoc fashion. The plot shows that at low wavenumbers the reflection coefficients
are similar in magnitude for PMDL and MD-PMDL. However, for high wavenumbers MD-PMDL performs much better than
PMDL which does not improve even with a large number of layers. This justifies our initial claim that continuum ABCs cannot
be directly used to approximate discrete systems. We will now present some numerical results that shows the effectiveness
of MD-PMDL.

5.3. Numerical experiment: 1-D discrete wave equation

The wave equation for a discrete half-space ðx P 0Þ is given by
�D2
x uðx; tÞ þ @

2uðx; tÞ
@t2 ¼ 0: ð90Þ
The domain of interest is chosen to be 10 atoms with positions xj ¼ ðj� 1Þh; j ¼ 1;2; . . . ;10; where h is the lattice spacing.
The initial and the loading conditions are given by
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ig. 3. Plot of the reflection coefficient when continuous PMDL and MD-PMDL boundary conditions are used for the discrete wave equation.
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Fig. 4. A semilog plot of the evolution of relative error in velocity.
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f ð0; tÞ ¼ sin2 p
2 t
� �

t < 2p
0 otherwise

(
; ð91Þ

uðx; 0Þ ¼ 0; ð92Þ
_uðx; 0Þ ¼ 0: ð93Þ
The velocity norm is used as the criterion to compare the different boundary conditions, as it provides a measure of the total
kinetic energy of the system and hence the temperature. The simulation is performed using MD-PMDL and continuous PMDL
to approximate the discrete half-space. Three layers of MD-PMDL were used with parameters ðpi; qiÞ ¼ 0; 1

16

� �
; 0; 4

16

� �
;


0; 9

16

� �
g, and the same parameters are used for the PMDL boundary conditions. Note that the parameters were chosen in

an ad hoc manner. The time evolution was performed using the velocity-verlet algorithm. The results are compared with
the exact solution which is computed by using a much larger domain (1000 atoms) so that the boundary effects are not seen
in the region of interest.

The relative errors from the two simulations are shown in Fig. 4. As expected, continuous PMDL has significant errors
ð� 10%Þ while MD-PMDL has a much smaller error (0.2%).

6. MD-PMDL formulation for 2-D square lattice

A unit cell corresponding to a general 2-D square lattice can be written as
A
i¼�1;...;1
j¼�1;...;1

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

266664
377775

8>>>><>>>>:

9>>>>=>>>>;U ¼ F; ð94Þ
which in turn can be expressed as
A
i¼�1;...;1
j¼�1;...;1

b11 b12

b21 b11

 !
b13 b14

b23 b13

 !
b31 b32

b41 b31

 !
b11 b12

b21 b11

 !
2666664

3777775

8>>>>><>>>>>:

9>>>>>=>>>>>;
U ¼ F; ð95Þ
where
b11 ¼
1
4
ða11 þ a22 þ a33 þ a44Þ;

b12 ¼
1
2
ða12 þ a34Þ; b21 ¼

1
2
ða21 þ a43Þ;

b13 ¼
1
2
ða13 þ a24Þ; b31 ¼

1
2
ða31 þ a42Þ;

b32 ¼ a32; b23 ¼ a23; b41 ¼ a41; b14 ¼ a14:
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Note that in (95), the operator on the left is of the form in (38) and hence can be expressed in terms of the basis matrices as
A
i¼�1;...;1
j¼�1;...;1

X
f2f�1;0;1g

Af � Pf

( )
; ð96Þ
where
P�1 ¼
P
2
� Q þ R

4
; P0 ¼

Q � R
2

; P1 ¼
P
2
þ Q þ R

4
;

P ¼
b11 b12

b21 b11

" #
; Q ¼

b13 b14

b23 b13

" #
; R ¼

b31 b32

b41 b31

" #
ð97Þ
Also, note that each of the matrices P, Q and R can in turn be written in terms of the basis matrices. Thus we have
Pf ¼
X

g2f�1;0;1g
cf ;gAg ; ð98Þ
and substituting (98) in (96), we get
A
i¼�1;...;1
j¼�1;...;1

X
f2f�1;0;1g

Af �
X

g2f�1;0;1g
cf ;gAg

 !( )
ð99Þ
Thus, the governing equation for a general harmonic periodic square lattice can be written as
A
i¼�1;...;1
j¼�1;...;1

X
f2f�1;0;1g
g2f�1;0;1g

cf ;gAf � Ag

8>><>>:
9>>=>>;U ¼ F; ð100Þ
where cf ;g are constants that can be determined from the original system. We will now construct a PMDL lattice that has the
same characteristic impedance as the system in (100) and hence the original harmonic system.

The 2-D assembly on the left hand side of (100) can be rewritten as a 1-D assembly
A
1

i¼�1

X
f2f�1;0;1g

Af � Of

( )
; ð101Þ
where
Of ¼ A
1

j¼�1

X
g2f�1;0;1g

cf ;gAg

( )
: ð102Þ
Note that the assembly in (101) is exactly the same as in (38), and hence can be rewritten (similar to the 1-D case) using (33)
as
A
1

i¼�1

X
f2f�1;0;1g

Lf
i Af � Of

( )
: ð103Þ
Substituting back Of from (102) into (103), we get
A
i¼�1;...;1
j¼�1;...;1

X
f2f�1;0;1g
g2f�1;0;1g

cf ;gLf
i Af � Ag

8>><>>:
9>>=>>; ð104Þ
This procedure can be repeated in a similar fashion for the assembly along the y direction to get
A
i¼�1;...;1
j¼�1;...;1

X
f2f�1;0;1g
g2f�1;0;1g

cf ;gLf
i Lg

j Af � Ag

8>><>>:
9>>=>>;: ð105Þ
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The assembly in (105) is the final form of PMDL lattice that is equivalent (with respect to stiffness) to the original system and
has exact stiffness matching property at any interface irrespective of the spacings Li and Lj. Note that for the choice of Li ¼ 1
and Lj ¼ 1, (105) is identical to the original matrix operator in (100).

Similar to the decomposition in the 1-D lattice, the 2-D lattice can also be split into an interior and an exterior system that
are coupled by the boundary region, i.e.
AiiUi ¼ Fi � AieUe;

AeeUe ¼ Fe � AeiUi:
ð106Þ
Since the interior is coupled with the exterior only along the boundary, and since the treatment of the interior is exactly the
same as in the 1-D case, only the exterior needs to be discussed here. Note that the exterior can be viewed as an assembly of
3 super-cells Ex;Ey and Cxy (see Fig. 5(b)), i.e.
AeeUe ¼ ðPþAfEx;Ey;CxygÞUe: ð107Þ
The super cells Ex and Ey will be referred to as edge exteriors as they extend to þ1 along x and y, respectively. Similarly the
super cell Cxy will be referred to as the corner exterior as it extends to þ1 along both x and y directions. The system of equa-
tions for the super-cells is given by
Ex ¼ A
i¼1;...;1

j¼�1;...;�1

X
f2f�1;0;1g
g2f�1;0;1g

cf ;gLf
i Af � Ag

8>><>>:
9>>=>>;;

Ey ¼ A
i¼�1;...;�1

j¼1;...;1

X
f2f�1;0;1g
g2f�1;0;1g

cf ;gLg
j Af � Ag

8>><>>:
9>>=>>;;

Cxy ¼ A
i¼1;...;1
j¼1;...;1

X
f2f�1;0;1g
g2f�1;0;1g

cf ;gLf
i Lg

j Af � Ag

8>><>>:
9>>=>>;:

ð108Þ
We now need to truncate Ex along x and Ey along y and Cxy along both. Again, similar to the 1-D case, the truncated system
can be written as
Fig. 5. A schematic of an infinite square lattice.
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Ex ¼ A
i¼1;...;mx

j¼�1;...;�1

X
f2f�1;0;1g
g2f�1;0;1g

cf ;gLf
i Af � Ag

8>><>>:
9>>=>>;;

Ey ¼ A
i¼�1;...;�1

j¼1;...;my

X
f2f�1;0;1g
g2f�1;0;1g

cf ;gLg
j Af � Ag

8>><>>:
9>>=>>;;

Cxy ¼ A
i¼1;...;mx
j¼1;...;my

X
f2f�1;0;1g
g2f�1;0;1g

cf ;gLf
i L

g
j Af � Ag

8>><>>:
9>>=>>;

ð109Þ
Note that the unit cell of Cxy reduces to that of Ex and Ey for Lj ¼ 1 and Li ¼ 1, respectively. Thus, the formulation for Cxy is
derived first and the formulations for Ey and Ex can then be obtained as a special case of the corner formulation.

6.1. Formulation for the corner exterior

The system of equations for the corner region Cxy is given by
A
i¼1;...;mx
j¼1;...;my

X
f2f�1;0;1g
g2f�1;0;1g

cf ;gLf
i Lg

j Af � Ag

8>><>>:
9>>=>>;Uc ¼ Fc: ð110Þ
Recall that the basis matrices can be decomposed as
A�1 ¼ v�1vt
�1; A0 ¼ v1vt

�1; A1 ¼ v1vt
1; ð111Þ
where vt
�1 ¼ ½�1 1� and vt

1 ¼ ½1 1�. Based on (111), Kronecker product of any two basis matrices can be represented as
Ai � Aj ¼ ða1at
2Þ � ðb1bt

2Þ ¼ ða1 � b1Þða2 � b2Þt: ð112Þ
Using (112) and (111), we can rewrite (110) as
A
i¼1;...;mx
j¼1;...;my

ðv�1 � v�1Þs1;ði;jÞ þ ðv�1 � v1Þs2;ði;jÞþ
þðv1 � v�1Þs3;ði;jÞ þ ðv1 � v1Þs4;ði;jÞþ
þc0;0ðA0 � A0Þui;j

8><>:
9>=>; ¼ Fc; ð113Þ
where s1; s2; s3 and s4 are the state variables for the corner region and are given by
s1;ði;jÞ ¼
c�1;�1

LiLj
ðv�1 � v�1Þtui;j;

s2;ði;jÞ ¼
c�1;0

Li
ðv�1 � v�1Þtui;j þ

c�1;1Lj

Li
ðv�1 � v1Þtui;j;

s3;ði;jÞ ¼
c0;�1

Lj
ðv�1 � v�1Þtui;j þ

c1;�1Li

Lj
ðv1 � v�1Þtui;j;

s4;ði;jÞ ¼ c0;1Ljðv�1 � v1Þtui;j þ c1;0Liðv1 � v�1Þtui;j þ c1;1LiLjðv1 � v1Þtui;j:

ð114Þ
Once the state variables are defined, the derivation is identical to the 1-D derivation. Thus (114) is inverse Fourier trans-
formed to obtain the time domain equations for the state variables which are then discretized using the Crank–Nicolson
method to obtain the evolution equations for the state variables. These evolution equations are given by
snþ1
1;ði;jÞ ¼

r̂i

ri
sn

1;ði;jÞ þ
1
ri

ŝnþ1
1;ði;jÞ � ŝn

1;ði;jÞ

� �
;

ŝnþ1
1;ði;jÞ ¼

r̂j

rj
ŝn

1;ði;jÞ þ
c�1;�1

rj
ðv�1 � v�1Þt unþ1

i;j � un
i;j

� �
;

ð115Þ

snþ1
2;ði;jÞ ¼

r̂i

ri
sn

2;ði;jÞ þ
c�1;0

ri
ðv�1 � v�1Þt unþ1

i;j � un
i;j

� �
þ c�1;1

ri
ðv�1 � v1Þt rjunþ1

i;j � r̂jun
i;j

� �
; ð116Þ

snþ1
3;ði;jÞ ¼

r̂j

rj
sn

3;ði;jÞ þ
c0;�1

rj
ðv�1 � v�1Þt unþ1

i;j � un
i;j

� �
þ c1;�1

rj
ðv1 � v�1Þt riunþ1

i;j � r̂iun
i;j

� �
; ð117Þ
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snþ1
4;ði;jÞ ¼ sn

4;ði;jÞ þ c0;1ðv�1 � v1Þt rjunþ1
i;j � r̂jun

i;j

� �
þ c1;0ðv1 � v�1Þt riunþ1

i;j � r̂iun
i;j

� �
þ riŝnþ1

4;ði;jÞ � r̂iŝn
4;ði;jÞ

� �
;

ŝnþ1
4;ði;jÞ ¼ ŝn

4;ði;jÞ þ c1;1ðv1 � v1Þt rjunþ1
i;j � r̂jun

i;j

� �
: ð118Þ
Substituting (115)–(118) into (113) evaluated at t ¼ tnþ1, we get the final system of equations for the corner exterior as
KL;cxy Unþ1
cxy
¼ Fnþ1

cxy
� Fn

sv;cxy
þ KR;cxy Un

cxy
; ð119Þ
where Fcxy is the coupling force with the edge exteriors, KL;cxy and KR;cxy are the stiffness matrices and Fsv;cxy is the force term
from the state variables. The explicit expressions for these are given by
KL;cxy ¼ A
i¼1;...;mx
j¼1;...;my

X
f2f�1;0;1g
g2f�1;0;1g

cf ;grf
i r

g
j Af � Ag

8>><>>:
9>>=>>;; ð120Þ

KR;cxy ¼ A
i¼1;...;mx
j¼1;...;my

c�1;�1
rirj

A�1 � A�1 þ c�1;0
ri

A�1 � A0þ
r̂j c�1;1

ri
A�1 � A1 þ c0;�1

rj
A0 � A�1þ

r̂jc0;1A0 � A1 þ r̂ic1;�1
rj

A1 � A�1þ

r̂ic1;0A1 � A0 þ rir̂jc1;1A1 � A1

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
; ð121Þ

Fn
sv;cxy

¼ A
i¼1;...;mx
j¼1;...;my

v�1 � v�1
r̂i
ri

sn
1;ði;jÞ þ

r̂j

rirj
ŝn

1;ði;jÞ

h i
þ

þv�1 � v1
r̂i
ri

sn
2;ði;jÞ þ v1 � v�1

r̂j

rj
sn

3;ði;jÞþ

þv1 � v1½sn
4;ði;jÞ þ ðri � r̂iÞŝn

4;ði;jÞ�

8>>>><>>>>:

9>>>>=>>>>;: ð122Þ
6.2. Formulation for edge exteriors

The state variables for the edge exterior along xðExÞ can be obtained from (114) by setting Lj ¼ 1 and are given by
s1;ði;jÞ ¼
c�1;�1

Li
ðv�1 � v�1Þtui;j;

s2;ði;jÞ ¼
c�1;0

Li
ðv�1 � v�1Þtui;j þ

c�1;1

Li
ðv�1 � v1Þtui;j;

s3;ði;jÞ ¼ c1;�1Liðv1 � v�1Þtui;j;

s4;ði;jÞ ¼ c1;0Liðv1 � v�1Þtui;j þ c1;1Liðv1 � v1Þtui;j:

ð123Þ
Substituting Li in (123) and following the same procedure as for the corner, we get the evolution equations for the state vari-
ables as
snþ1
1;ði;jÞ ¼

r̂i

ri
sn

1;ði;jÞ þ
c�1;�1

ri
ðv�1 � v�1Þt unþ1

i;j � un
i;j

� �
; ð124Þ

snþ1
2;ði;jÞ ¼

r̂i

ri
sn

2;ði;jÞ þ
c�1;0

ri
ðv�1 � v�1Þtðunþ1

i;j � un
i;jÞ þ

c�1;1

ri
ðv�1 � v1Þtðunþ1

i;j � un
i;jÞ; ð125Þ

snþ1
3;ði;jÞ ¼ sn

3;ði;jÞ þ c1;�1ðv1 � v�1Þtðriunþ1
i;j � r̂iun

i;jÞ; ð126Þ

snþ1
4;ði;jÞ ¼ sn

4;ði;jÞ þ c1;0ðv1 � v�1Þtðriunþ1
i;j � r̂iun

i;jÞ þ c1;1ðv1 � v1Þtðriunþ1
i;j � r̂iun

i;jÞ: ð127Þ
The stiffness matrices and the state variable force are given by
KL;ex ¼ A
i¼1;...;mx

j¼�1;...;�1

X
f2f�1;0;1g
g2f�1;0;1g

cf ;grf
i Af � Ag

8>><>>:
9>>=>>; ð128Þ

KR;ex ¼ A
i¼1;...;mx

j¼�1;...;�1

c�1;�1
ri

A�1 � A�1 þ c�1;0
ri

A�1 � A0þ
c�1;1

ri
A�1 � A1 þ r̂ic1;�1A1 � A�1þ

r̂ic1;0A1 � A0 þ r̂ic1;1A1 � A1

8>><>>:
9>>=>>;; ð129Þ

Fn
sv;ex
¼ A

i¼1;...;mx
j¼�1;...;�1

v�1 � v�1
r̂i
ri

sn
1;ði;jÞ þ v�1 � v1

r̂i
ri

sn
2;ði;jÞþ

þv1 � v�1sn
3;ði;jÞ þ v1 � v1sn

4;ði;jÞ:

( )
: ð130Þ
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A similar procedure can be followed to get the contributions from the edge exterior along y. Thus, the combined system of
equations for the exterior can be written as
Fig. 6.
KLUnþ1
e ¼ Fnþ1

e � Fn
sv þ KRUn

e ; ð131Þ
where
KL ¼ AfKL;cxy ;KL;ey ;KL;exg þ P; ð132Þ
KR ¼ AfKR;cxy ;KR;ey ;KR;exg; ð133Þ

Fn
sv ¼ A Fn

sv;cxy
;Fn

sv;ex
;Fn

sv;ey

n o
: ð134Þ
Remark on computational cost: Note that the formulations in (131) and (54) are implicit, as the atoms in the PMDL exterior
are coupled. This is in contrast with explicit computations in the interior and raises the issue of computational overhead due
to MD-PMDL. Fortunately, the cost of these implicit computations are not significant due to the local nature of the coupling
in MD-PMDL. Note that the left-hand-side operator in (131) is local in space, thus indicating sparse matrices and linear scal-
ing of computational cost associated with factorization. Furthermore, assuming constant time increment, such factorization
needs to be performed only once at the beginning of analysis and the cost of solving sparse triangular matrices is similar to
explicit computation. Thus, the additional overhead due to MD-PMDL is not very significant.

Generalization to complex lattice systems: While the development of MD-PMDL is limited to simple square lattice systems
in this paper, the methodology presented here is quite general and a formal extension to more complex lattice systems is
straightforward. The basic idea is that a complex lattice can be viewed as a square lattice but with multiple atoms associated
with each lattice site. In other words the unit cell for a complex lattice is identical to (94) but the matrix elements are in turn
block matrices. Following the same procedure, i.e. (95)–(105), to obtain the equivalent discrete lattice, we get a similar form
A
i¼�1;...;1
j¼�1;...;1

X
f2f�1;0;1g
g2f�1;0;1g

Lf
i Lg

j Cf ;g � Af � Ag

8>><>>:
9>>=>>;; ð135Þ
where Cf ;g are block matrices as compared to constants in (105). While the procedure is straightforward, the stability prop-
erties for this extension are not very clear. Complex lattice systems contain optical branches in their dispersion relation
where the group and phase velocities may have opposite signs. Such a situation necessitates careful choice of PMDL param-
eters to avoid instabilities [18,22]. Extension of MD-PMDL for complex lattice systems and resolution of associated stability
issues are subjects of future research and will be reported in future publications.

6.3. Numerical experiment: 2-D discrete wave equation

The wave equation for a discrete half-space in 2-D ðx P 0 [ y P 0Þ is given by
�D2
x u� D2

yuþ @
2u
@t2 ¼ f : ð136Þ
The domain of interest has 100 atoms along each dimension and the external force is applied at the node at position (75,75)
of the square lattice. The domain of interest here is taken larger than the 1-D problem so that the wave reflections can be
seen clearly at the edges. The simulation is performed using both MD-PMDL and continuous PMDL boundary conditions
The reflected energy contours at t ¼ 100 for the 2-D discrete wave equation using (a) MD-PMDL and (b) continuous PMDL boundary conditions.
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Fig. 7. Plot of the evolution of relative error in velocity norm.

Fig. 8. A schematic of the setup for crack simulation.
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and compared with the exact solution that is obtained by simulating a much larger domain. The loading and initial condi-
tions are given by
f ð75;75; tÞ ¼ 10 	 sinð0:9 	 ptÞ2 t < 100 p
0:9

� �
0 otherwise

(
; ð137Þ

uði; j;0Þ ¼ 0; ð138Þ
_uði; j;0Þ ¼ 0: ð139Þ
The parameters for both PMDL and MD-PMDL are taken as fðpi; qiÞ ¼ ð0;1Þg and velocity-verlet algorithm is used for the
time-stepping. Fig. 6 shows the energy contours at t ¼ 100. The figure clearly shows significant reflection at the corner
boundary for continuous PMDL as compared to hardly any reflections for MD-PMDL boundary conditions. Also, Fig. 7 shows
the error evolution over the duration of the simulation and again the superior absorption properties of MD-PMDL are clearly
seen (MD-PMDL has an error of <1% while continuous PMDL’s error reaches 9%). Based on the 1-D and 2-D results, we can
conclude that MD-PMDL is more accurate in phonon absorption than continuous PMDL.

6.4. Numerical experiment: mode 3 fracture

In this simulation, a semi-infinite strip with an initial crack is subjected to out-of-plane displacements resulting in a stea-
dy growth of the initial crack. The aim of the simulation is to see the effectiveness of MD-PMDL in absorbing the phonons
emitted due to the breaking of bonds during crack propagation. While this is not a full fledged crack propagation simulation,
it gives an idea of the usefulness of MD-PMDL in a realistic fracture simulation involving moving boundaries (which is out of
scope of this paper). This example also illustrates the applicability of MD-PMDL where the interior is nonlinear.

We used the Slepyan model of fracture in which the atoms are connected to the neighbors through bonds that are elastic
when the deformation is less than a limit, uf ¼ 2, and snap when the deformation exceeds the limit. The same setup as in [23]
was used to study the effect of the high frequency phonons that are emitted when the bonds break. The setup is as shown in
Fig. 8. The interior is a rectangular grid that is 20 atoms wide and 100 atoms long. The initial crack is taken to be 20 atoms
long.
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The exterior region is approximated using MD-PMDL using 5 identical layers with parameters fðpi; qiÞ ¼ ð0;1Þg. The other
boundary condition used for comparison is a buffer region that is 10 atoms wide with a Dirichlet condition at the end. Also,
Dirichlet conditions u ¼ þU and �U are applied at the top and bottom row of atoms. The Dirichlet condition at the left edge
is taken to be þU for atoms above the crack and �U for the atoms below the crack, and for the right edge is taken to vary
linearly from �U at the bottom row to þU at the top row. Also, for the atoms outside the initial cracked zone, the initial dis-
placements are taken to vary linearly between the Dirichlet conditions at the top and bottom rows. For the atoms in the
cracked zone, the initial conditions are taken to vary linearly between the Dirichlet condition at the left edge and the initial
displacement immediately to the right of the crack tip. The value of U is taken to be 20 for this simulation. The initial veloc-
ities are taken to be zero over the entire domain.

In [23], the authors use moving boundaries to simulate a steady state crack growth. However, steady state growth is not
simulated in this example and the crack is allowed to grow from initial configuration until it reaches the end of the domain.
The velocity norm is measured for a small region (40 atoms wide) near the left boundary to see the effect of reflections due to
phonons. The simulations are carried out for MD-PMDL and a truncated boundary with an offset of 10 atoms. The results are
compared against the exact solution obtained using a much larger domain. Fig. 9 shows the error in velocity norm and it is
clear that MD-PMDL performs better than a truncated boundary (MD-PMDL has <5% error while truncated BC has almost 30%
error). Though the magnitude of the values are small, this would be significant in an actual fracture simulation with moving
boundaries as the domain size would be small and reflection of phonons back into the domain will pose a major problem.
This example also demonstrates that MD-PMDL performs well for the case of nonlinear interaction in the interior domain.

7. Concluding remarks

We have presented a systematic procedure to develop ABCs for MD domains and have demonstrated through numerical
examples that they are superior in performance compared to their continuum counterparts. This validates our initial asser-
tion that a continuous ABC cannot be used directly for the MD domain.

We also presented an explicit expression for the error estimate in terms of the parameters of the boundary condition. The
error estimate makes the approximation characteristics of the boundary condition transparent, indicating that it can be eas-
ily optimized for performance.

The final form of the boundary conditions for 1-D and 2-D lattices is presented in an explicit form that is easy to imple-
ment. We note that while the boundary condition couples the domain along the boundary, it is still local to the region near
the boundary. Since the error decays exponentially with the number of layers, often only a few layers are needed to obtain
accurate results. Thus, the additional overhead due to MD-PMDL is not high. Also, the method does not involve any expen-
sive convolution operations as it is completely local in time. The only computational burden is the solution of sparse linear
system (factorization needs to be done just once). While explicit comparison with other existing MD-ABCs is not made, we
believe that the local nature of MD-PMDL provides an efficient alternative to existing MD-ABCs.
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While MD-PMDL’s effectiveness was illustrated for a square lattice with scalar field variable, the derivation of MD-PMDL
is applicable for a vector equation. Thus, it should be possible to extend MD-PMDL for more complex lattices by expressing
them as a simple lattice with multiple degrees of freedom per node. However, complex lattices involve optical phonon
branches that are similar to dispersion branches for elastic wave propagation in continuous waveguides. Since PMDL has sta-
bility issues in simulating elastic waves in layers [18], we anticipate that the extension to complex lattices might not be
straightforward and would be investigated in the future.

The current formulation is limited to the case of zero temperature in the exterior. For a more realistic simulation,
MD-PMDL should be extended to handle non-zero temperatures in the exterior (heat bath). This extension to non-zero tem-
perature would be investigated in the near future; we intend to build on the existing ideas in treating heat bath (see [15]).

Another area of focus is the extension of MD-PMDL as an interface condition for atomistic-continuum coupling (see
[13,24,25]). While interface conditions act like an ABC in dissipating the high frequency phonons, they also need to enable
the exchange of information with the continuum domain. A related extension would be for moving boundaries for simulat-
ing processes such as dynamic crack propagation and moving dislocation.
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